Joint genome-wide association and transcriptome sequencing reveals a complex polygenic network underlying hypocotyl elongation in rapeseed (Brassica napus L.)
نویسندگان
چکیده
Hypocotyl elongation is considered an important typical seedling trait contributing directly to an increase in and stabilization of the yield in Brassica napus, but its molecular genetic mechanism is poorly understood. In the present study, hypocotyl lengths of 210 lines were measured in an illuminated culture room. A genome-wide association study (GWAS) was performed with 23,435 single nucleotide polymorphisms (SNPs) for hypocotyl length. Three lines with long hypocotyl length and three lines with short hypocotyl length from one doubled haploid line (DH) population were used for transcriptome sequencing. A GWAS followed by transcriptome analysis identified 29 differentially expressed genes associated with significant SNPs in B. napus. These genes regulate hypocotyl elongation by mediating flowering morphogenesis, circadian clock, hormone biosynthesis, or important metabolic signaling pathways. Among these genes, BnaC07g46770D negatively regulates hypocotyl elongation directly, as well as flowering time. Our results indicate that a joint GWAS and transcriptome analysis has significant potential for identifying the genes responsible for hypocotyl elongation; The extension of hypocotyl is a complex biological process regulated by a polygenic network.
منابع مشابه
Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.)
Soil salinity is a serious threat to agriculture sustainability worldwide. Salt tolerance at the seedling stage is crucial for plant establishment and high yield in saline soils; however, little information is available on rapeseed (Brassica napus L.) salt tolerance. We evaluated salt tolerance in different rapeseed accessions and conducted a genome-wide association study (GWAS) to identify sal...
متن کاملGenome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus
Yield is one of the most important yet complex crop traits. To improve our understanding of the genetic basis of yield establishment, and to identify candidate genes responsible for yield improvement in Brassica napus, we performed genome-wide association studies (GWAS) for seven yield-determining traits [main inflorescence pod number (MIPN), branch pod number (BPN), pod number per plant (PNP),...
متن کاملGenome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.)
Plant architecture is vital not only for crop yield, but also for field management, such as mechanical harvesting. The branch angle is one of the key factors determining plant architecture. With the aim of revealing the genetic control underlying branch angle in rapeseed (Brassica napus L.), the positional variation of branch angles on individual plants was evaluated, and the branch angle incre...
متن کاملGlobal Dynamic Transcriptome Programming of Rapeseed (Brassica napus L.) Anther at Different Development Stages
Rapeseed (Brassica napus L.) is an important oil crop worldwide and exhibits significant heterosis. Effective pollination control systems, which are closely linked to anther development, are a prerequisite for utilizing heterosis. The anther, which is the male organ in flowering plants, undergoes many metabolic processes during development. Although the gene expression patterns underlying polle...
متن کاملA Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus
Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identificatio...
متن کامل